Philadelphia University

Lecture Notes for 650364

Probability \& Random Variables

Chapter 1:

Lecture 4: Combined Experiments and Bernoulli Trials
Department of Communication \& Electronics Engineering

Instructor Dr. Qadri Hamarsheh

Email: qhamarsheh@philadelphia.edu.jo
Website: http://www.philadelphia.edu.jo/academics/qhamarsheh

Probability

1)Introduction
2)Set Definitions
3)Set Operations
4)Probability Introduced Through Sets and Relative Frequency
5)Joint and Conditional Probability
6)Total Probability and Bayes' Theorem
7)Independent Events
8)Combined Experiments
9) Bernoulli Trials

8)Combined Experiments

\checkmark A combined experiment consists of forming a single experiment by suitably combining individual experiments called subexperiments.
\checkmark Combined Sample Space:

- Consider two subexperiments with sample spaces S1 and S2.
- We form a new sample space called the combined sample space whose elements are all the ordered pairs (sl, s2).
- The combined sample space is denoted

$$
\mathbf{S}=\mathbf{S} 1 \times \text { S2 }
$$

\checkmark For a sequence of n events in which the first event can occur in $k l$ ways and the second event can occur in lk2 ways and the third event can occur in $1 k 3$ ways, and so on, the total number of ways the sequence can occur is $k 1 \cdot k 2 \cdot k 3 \ldots \cdot k n$
\checkmark Example: In an experiment of flipping a coin and rolling a die, the sample spaces of subexperiments are given by:

$$
\mathrm{S} 1=\{\mathrm{H}, \mathrm{~T}\} \text { andl } \mathrm{S} 1=\{1,2,3,4,5,6\}
$$

The combined sample space $\mathrm{S}=\mathrm{S} 1 \times \mathrm{S} 2$ becomes $S=\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6),(T, 1),(T, 2),(T, 3),(T, 4)$, (T,5), (T,6)\}

For example, the probability of event $\bar{A}=\{T, 5\}$ equals $1 / 12$
\checkmark Example: In an experiment of flipping a coin twice, the sample spaces of subexperiments are given by:

$$
\mathrm{S} 1=\{\mathrm{H}, \mathrm{~T}\} \text { and } \mathrm{S} 2=\{\mathbf{H}, \mathrm{T}\}
$$

The combined sample space $\mathrm{S}=\mathrm{S} 1 \times \mathrm{S} 2$ becomes

$$
\mathrm{S}=\{(\mathrm{H}, \mathrm{H}),(\mathbf{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{~T})\}
$$

Fundamental Counting Techniques (Combinatorial

analysis)

1) Permutations:

\checkmark In experiments often involve multiple trials in which outcomes are elements of a finite sample space and they are not replaced after each trial the number of possible sequences of the outcomes is often important.
\checkmark An arrangement of n distinct objects in a specific order is called a permutation.
\checkmark The number of permutations of n objects using all the objects is n !
\checkmark The number of sequences, or permutations, of r elements taken from n elements when order of occurrence is important is given by:

$$
\left.\begin{array}{rl}
P_{r}^{n} & =n(n-1)(n-2) \ldots(n-r+1) \\
& =\frac{n!}{(n-r)!}, \quad r=1,2, \ldots, n
\end{array}\right\}
$$

\checkmark Example: How many permutations are there for four cards taken from a 52-card deck?

$$
P_{4}^{52}=\frac{52!}{(52-4)!}=(52)(51)(50)(49)=6,497,400
$$

\checkmark Example: In how many different ways can 6 people be arranged in a row for a photograph?

- Solution: This is a permutation of 6 objects.

Hence $6!=6 * 5 * 4 * 3 * 2 * 1=720$ ways.
\checkmark Example: In how many different ways can 3 people be arranged in a row for a photograph if they are selected from a group of 5 people?

- Solution: Since 3 people are being selected from 5 people and arranged in a specific order, $n=5, r=3$. Hence, there are

$$
{ }_{5} P_{3}=\frac{5!}{(5-3)!}=\frac{5!}{2!}=\frac{5 \cdot 4 \cdot 3 \cdot 2!}{2!}=5 \cdot 4 \cdot 3=60 \text { ways }
$$

\checkmark Example: How many three-digit code can be made where all digits are unique? The possible digits are the numbers 0 through 9.

$$
P_{3}^{10}=\frac{10!}{(10-3)!}=(10)(9)(8)=720 \text { Codes }
$$

2) Combinations:

\checkmark The number of sequences, or combinations, of r elements taken from n elements when order of occurrence is not important (for example, $\overline{A B C=} \overline{A C B}=\mathbf{B A C}$) is given by:

$$
\begin{aligned}
& \qquad\binom{n}{r}=\frac{n!}{(n-r)!r!} \\
& \text { The numbers }\binom{n}{r} \text { are called binomial coefficients }
\end{aligned}
$$

\checkmark Suppose two letters are selected from the four letters, $\bar{A}, \mathbf{B}, \mathbf{C}$, and D.

The different permutations are shown on the left and the different combinations are shown on the right.

PERMUTATIONS					COMBINATIONS		
AB	BA	CA	DA		AB		
BC							
AC	BC	CB	DB		AC		
AD	BD	CD	DC	AD	CD		

\checkmark Example: How many sequences are there for four cards taken from a 52-card deck (if the order of cards is not important)?

$$
\binom{52}{4}=\frac{52!}{(52-4)!4!}=\frac{(52)(51)(50)(49)}{(4)(3)(2)(1)}=270,725
$$

\checkmark Example: In a classroom, there are 8 women and 5 men. A committee of 3 women and 2 men is to be formed for a project. How many different possibilities are there?

- Solution: In this case, you must select 3 women from 8 women and 2 men from 5 men. Since the word "and" is used, multiply the answers.

$$
\begin{aligned}
{ }_{8} C_{3} \cdot{ }_{5} C_{2} & =\frac{8!}{(8-3)!3!} \cdot \frac{5!}{(5-2)!2!} \\
& =\frac{8!}{5!\cdot 3!} \cdot \frac{5!}{3!\cdot 2!} \\
& =\frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!\cdot 3 \cdot 2 \cdot 1} \cdot \frac{5 \cdot 4 \cdot 3!}{3!\cdot 2 \cdot 1}=56 \cdot 10 \\
& =560
\end{aligned}
$$

\checkmark Example: How many three-digit code can be made where the order of digits is not important? The possible digits are the numbers 0 through 9.

$$
\binom{10}{3}=\frac{10!}{(10-3)!3!}=\frac{(10)(9)(8)}{(3)(2)(1)}=120 \quad \text { Codes }
$$

9)Bernoulli Trials

\checkmark In the theory of probability and statistics, a Bernoulli trial is a random experiment with exactly two possible outcomes, success or failure, flipping a coin, hitting or missing a target, passing or failing an exam, in which the probability of success is the same every time the experiment is conducted.
\checkmark For this type of experiment, we let \bar{A} be the elementary event having one of the two possible outcomes with probability p and its complement \bar{A} with probability 1-p.

$$
P(A)=p, P(\bar{A})=1-p
$$

\checkmark If the basic experiment is repeated N times , such repeated experiments are called Bernoulli trials.
\checkmark The probability that event \mathbb{A} occurs exactly k times out of the \mathbb{N} trails is given By

$$
P\{A \text { occurs exactly } k \text { times }\}=\binom{N}{k} p^{k}(1-p)^{N-k}
$$

\checkmark Example: A submarine attempts to sink an aircraft carrier. It will be successful only if two or more torpedoes hit the carrier. If the sub fires three torpedoes and the probability of a hit is 0.4 for each torpedo, what is the probability that the carrier will be sunk?

$$
\begin{aligned}
& P\{\text { exactly no hits }\}=\binom{3}{0}(0.4)^{0}(1-0.4)^{3}=0.216 \\
& P\{\text { exactly one hit }\}=\binom{3}{1}(0.4)^{1}(1-0.4)^{2}=0.432 \\
& P\{\text { exactly } 2 \text { hits }\}=\binom{3}{2}(0.4)^{2}(1-0.4)^{1}=0.288 \\
& P\{\text { exactly } 3 \text { hits }\}=\binom{3}{3}(0.4)^{3}(1-0.4)^{0}=0.064
\end{aligned}
$$

The answer we desire is

$$
\begin{aligned}
P\{\text { carrier sunk }\} & =P\{\text { two or more hits }\} \\
& =P\{\text { exactly } 2 \text { hits }\}+P\{\text { exactly } 3 \text { hits }\}=0.352
\end{aligned}
$$

\checkmark Example: student is known to arrive late for class 30% of the time, if the class meets five times a week. Find: the probability that the student is late for at least four classes in a given week; the probability that the student will not be late at all during a given week.
$P\{$ student is late for at least 4 classes $\}=$

$$
\begin{aligned}
& =P\{\text { exactly } 4 \text { classes }\}+P\{\text { exactly } 5 \text { classes }\} \\
& =\binom{5}{4}(0.3)^{4}(1-0.3)^{1}+\binom{5}{5}(0.3)^{5}(1-0.3)^{0}
\end{aligned}
$$

Calculation rules of probability - summary:

Sum rule

$$
\begin{aligned}
\mathrm{P}(A \cup B) & =\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\
& =\mathrm{P}(A)+\mathrm{P}(B) \quad \text { (if } A \text { and } B \text { are mutually exclusive) }
\end{aligned}
$$

Product rule

$$
\begin{aligned}
\mathrm{P}(A \cap B) & =\mathrm{P}(A) \mathrm{P}(B \mid A) \\
& =\mathrm{P}(A) \mathrm{P}(B) \quad \text { (if } A \text { and } B \text { are independent) }
\end{aligned}
$$

Total probability

$$
\mathrm{P}(A)=\sum_{i} \mathrm{P}\left(B_{i}\right) \mathrm{P}\left(A \mid B_{i}\right) \quad \text { (if } B_{i} \text { 's form a decomposition) }
$$

Bayes' formula

$$
\mathrm{P}(B \mid A)=\frac{\mathrm{P}(A \mid B) \mathrm{P}(B)}{\mathrm{P}(A)}
$$

Extended Bayes' formula

$$
\mathrm{P}\left(B_{i} \mid A\right)=\frac{\mathrm{P}\left(A \mid B_{i}\right) \mathrm{P}\left(B_{i}\right)}{\sum_{j} \mathrm{P}\left(A \mid B_{j}\right) \mathrm{P}\left(B_{j}\right)} \quad \text { (if } B_{i} \text { 's form a decomposition) }
$$

